服务承诺
资金托管
原创保证
实力保障
24小时客服
使命必达
51Due提供Essay,Paper,Report,Assignment等学科作业的代写与辅导,同时涵盖Personal Statement,转学申请等留学文书代写。
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标私人订制你的未来职场 世界名企,高端行业岗位等 在新的起点上实现更高水平的发展
积累工作经验
多元化文化交流
专业实操技能
建立人际资源圈Nanobots
2013-11-13 来源: 类别: 更多范文
INTRODUCTION
"Living organisms are naturally-existing, fabulously complex systems of molecular nanotechnology." - Dr. Gregory Fahy
The above statement raises the interesting possibility that machines constructed at the molecular level (nanomachines) may be used to cure the human body of its various ills. This application of nanotechnology to the field of medicine is commonly called as nanomedicine.
NANOROBOTS: WHAT ARE THEY'
Nanorobots are nanodevices that will be used for the purpose of maintaining and protecting the human body against pathogens. They will have a diameter of about 0.5 to 3 microns and will be constructed out of parts with dimensions in the range of 1 to 100 nanometers. The main element used will be carbon in the form of diamond / fullerene nanocomposites because of the strength and chemical inertness of these forms. Many other light elements such as oxygen and nitrogen can be used for special purposes. To avoid being attacked by the host’s immune system, the best choice for the exterior coating is a passive diamond coating. The smoother and more flawless the coating, the less the reaction from the body’s immune system. Such devices have been designed in recent years but no working model has been built so far.
The powering of the nanorobots can be done by metabolising local glucose and oxygen for energy. In a clinical environment, another option would be externally supplied acoustic energy. Other sources of energy within the body can also be used to supply the necessary energy for the devices. They will have simple onboard computers capable of performing around 1000 or fewer computations per second. This is because their computing needs are simple. Communication with the device can be achieved by broadcast-type acoustic signalling.
A navigational network may be installed in the body, with stationkeeping navigational elements providing high positional accuracy to all passing nanorobots that interrogate them, wanting to know their location. This will enable the physician to keep track of the various devices in the body. These nanorobots will be able to distinguish between different cell types by checking their surface antigens (they are different for each type of cell). This is accomplished by the use of chemotactic sensors keyed to the specific antigens on the target cells.
When the task of the nanorobots is completed, they can be retrieved by allowing them to exfuse themselves via the usual human excretory channels. They can also be removed by active scavenger systems. This feature is design-dependent.
How Nanorobots Are Made
Nanotechnology as a whole is fairly simple to understand, but developing this universal technology into a nanorobot has been slightly more complicated.
To date, scientists have made significant progress but have not officially released a finished product in terms of a nanorobot that functions on an entirely mechanical basis.
Many of the nanobot prototypes function quite well in certain respects but are mostly or partly biological in nature, whereas the ultimate goal and quintessential definition of a nanorobot is to have the microscopic entity made entirely out of electromechanical components.
In fact, researchers anticipate that due to the complicated nature of their construction, nanobots will only fully emerge after several generations of partly-biological nanobot forerunners have been constructed in order to make them.
Nanorobots are essentially an adapted machine version of bacteria. They are designed to function on the same scale as both bacteria and common viruses in order to interact with and repel them from the human system.
Since they are so small that you can’t see them with your naked eye, they will also possibly be used to perform “miracle” functions such as cleaning your kitchen (“the kitchen that cleans itself!”) invisibly weaving fabric, cooking food slowly but steadily, and essentially performing other functions that humans could do, but—let’s face it—will probably be too lazy to do ourselves by the time these nanobots become functional.
Since the best way to create a nanobot is to use another nanobot, the problem lies in getting started. Humans are able to perform one nano-function at a time, but the thousands of varied applications required to construct an autonomous robot would be exceedingly tedious for us to execute by hand, no matter how high-tech the laboratory. So it becomes necessary to create a whole set of specialized machine-tools in order to speed the process of nanobot building.
Researchers have been chipping away at this problem for decades. In 1989 they discovered how to manually operate the system; a group of IBM engineers lined individual atoms up one by one until they had spelled out their company’s name.
In doing so they not only created the smallest business logo in history, but also discovered for themselves just how long and grueling the process of hand-building even a single nanobot would be. True, nanobots measure more like six atoms across,
but they are far more complicated in design and need to be engineered in such a way that they are autonomous.
The ideal nanobot consists of a transporting mechanism, an internal processor and a fuel unit of some kind that enables it to function. The main difficulty arises around this fuel unit, since most conventional forms of robotic propulsion can’t be shrunk to nanoscale with current technology. Scientists have succeeded in reducing a robot to five or six millimeters, but this size still technically qualifies it as a macro-robot.
One possible solution is to adhere a fine film of radioactive particles to the nanobot’s body. As the particles decay and release energy the nanobot would be able to harness this power source; radioactive film can be enlarged or reduced to any scale without a drop in efficiency occurring.
Another nice side effect of this system is its ability to renew automatically. With the constant circulating nuclear energy it would supply, this fuel cell would never need to be replaced. This puts it several notches above solar cells or conventional battery packs of any size, which were previously the other two options being considered for equipping the nanorobot.
The other problem with constructing a successful nanorobot lies in breaking its materials down small enough. Metal that might be used for the robot’s construction behaves one way in relatively large quantities and a completely different way on the nanoscale—in fact, this is the entire basis for nanotechnology as a discipline.
Experts believe that silicon might make the ideal material, especially since it has been traditionally used for delicate electronics, particularly small computer parts. Microscopic silicon components called transducers have so far been successfully built into nanorobot legs.
Scientists are hard at work on designing a body built out of transducers; they are encountering slight problems in agreeing on what the final shape of the standard nanobot should be.
Very few researchers support the biped-humanoid design, since this has given test robots a strange, clumsy shuffle. The nanobot needs to be fast, aerodynamic and smooth-moving in order to complete its functions. Some people think that a spider-like body would work best, but many nanorobot researchers also think that a smaller version of the centipede might be best.
They hope that by equipping the nanobot with several sets of fast-moving legs and keeping its body low to the ground, they can create a quick, efficient machine that would also be suitably shaped for introduction into human blood vessels to perform functions such as clearing away built-up cholesterol or repairing tissue damage.
These tasks are key to the concept of a nanorobot, since it is anticipated that many of their most useful applications will be in the medical field. Doctors and researchers expect nanobots to be useful for a wide variety of things, since a robot this small can
actually interact with materials on their molecular and atomic level. Because of this special capability, the nanobots can build or destroy particle by particle.
They could rebuild tissue molecules in order to close a wound, or rebuild the walls of veins and arteries to stop bleeding and save lives. They could make their way through the bloodstream to the heart and perform heart surgery molecule by molecule without many of the risks and discomfort associated with traditional open-heart operations. Likewise, researchers hope that nanorobots will have many miraculous effects on brain research, cancer research, and finding cures for difficult diseases like leukemia and AIDS.
Although standardized nanorobot production has not yet been fully realized, scientists are hard at work developing a system for constructing these tiny helpers. Chances are good that sometime in the next 25 years they will make their public debut.
What Nanobots Are Made Out Of
Nanotechnology simply refers to very small particles and doesn’t specify the material the particles come from, so when researchers sat down to develop a nanorobot they were faced with literally endless possibilities for its material makeup.
Biological nanobots have technically been created, as have large or conventionally-sized robots with the ability to work on the nanoscale.
But the traditional idea of nanorobots involves them being all or mostly mechanical, and these types of nanobots are the next step in nanotechnology.
There are many scientists and research groups currently hard at work on shrinking and adapting the conventional robot and they’ve gotten them pretty small, but not quite down to the nanoscale as of yet. The main problem seems to be the robotic power source for such a tiny machine.
Traditionally, most robots have a solar cell or some kind of battery pack, but obviously these are many times too large for a nanobot. However, the answer may lie in nuclear technology. Researchers consider it highly likely that when equipped with a thin film of radioactive material, nanobots will be able to fuel themselves on particles released by decaying atoms.
This fuel technology is easily scaled down to nano-size. It also proves immensely efficient because with such a self-driven system in place, nanobots would be able to function indefinitely and never require a replacement fuel cell as they would with batteries or solar power.
If and when the fully functional mechanical nanobot does emerge, as it most likely will in the next few years, its primary material may be silicon. Silicon has always been the first choice for delicate electronics and has the right qualities to make a successful scaled-down robot, even one as tiny as a few hundred nanometers. It is strong enough to last and conduct electricity on a regular basis, but also flexible enough to be manipulated in various ways; this makes it the universal one-size-fits-all electronic material.
However, constructing nanobots out of silicon would subject them to the same issues that other silicon electronics face, one of which is that they are not biodegradable. If nanobots were to be produced on a large scale their enduring materials would not be as dangerous as all the microchips and computer electronics currently sitting in our landfills, but they would still be another small drain on our natural resources.
Consequently it becomes even more pressing to find a mass-recycling solution for them. Silicon can be recycled into low-grade products like solar cells, but the process is long, complicated, and usually costly.
Up to this point in time, the closest thing to a purely mechanical nanorobot that has ever been created was the work of U.C. Berkeley affiliate Kris Pister. He invented a solar-powered robot that measures only 8.5 millimeters and can walk slowly on two “legs” like humans do. True to form, Pister composed his robot primarily of tiny silicon pieces called transducers which are capable of taking the energy generated by the robot’s solar cell and turning it into mechanical power. Although extremely tiny, technically the robot that Pister created is macroscopic. But it does represent a valuable step in the scaling-down process of traditional electromechanical robots.
One of the issues associated with the final creation of the nanobot is autonomy. A suggested alternative to silicon components is installing a system whereby small clusters of molecules react to forces in their environment, convert these reactions into power, and use the resulting energy in order to move themselves forward.
But if the motive power has been generated by inevitable chemical or physical reactions, will the nanobot still qualify as autonomous' Critics say no. Since the ultimate goal is to create an autonomous self-moving nanorobot, this approach seems to miss the goal and scientists anticipate that the true innovations will lie in steadily shrinking down the traditional electromechanical components: power supply, processor, transducer, and integration.
With these components in place and adjusted to fit the scale and functioning peculiarities of the nanorobot, researchers anticipate that the nanorobot will soon be created.
These miniscule robots may be up and running within the next 25 years. One of the primary difficulties that has prevented them from being completed up to this point is
the simple issue of how one goes about building things that are this tiny. In the future, scientists expect to create micro-factories that will pump out legions of nanobots for human consumption.
But so far the only tools we have for working at this level are those found on larger robots, and in some cases they are not convenient for the type of construction involved in producing a nanorobot. So the work is progressing, but slowly.
Hard oxides and metals that are typically used for electronics will be essential, but many of them (including silicon) have to be effectively reduced to the nanoscale before any serious work can go forward. Prototypes have been built using biological components, but the ultimate goal is to achieve a purely electromechanical model.
Scientists want to build mechanical nanobots on the bacteria model. In terms of characteristics and function, a bacterium is simply a natural nanomachine gone haywire. Scientists hope that by steadily adapting individual bacteria over time and potentially adding electrical components by degrees, they will eventually be able to convert them into nanobots. Probably the first functioning nanobots will have to be at least partly biological so that we can use these pre-runners to create their more sophisticated descendants.
In the middle stage of our nanobot development we will probably see high-production nano-factories emerge, staffed by partly-biological nanorobots which can then in turn produce an ultimate nanorobot: a fully mechanical, voice-programmed microscopic machine capable of performing a wide array of useful functions. Scientists consider this the end goal in all nanotechnological research, and expect that it will take several stages to get there. So, in other words, fans of the ideal nanorobot may have to wait. But eventually we will have this ultimate technology and all of its amazing capabilities at our disposal.
RATIONALE BEHIND CONSTRUCTION TO EXHIBIT
In the future, nanorobots could revolutionize medicine. Doctors could treat everything from heart disease to cancer using tiny robots the size of bacteria, a scale much smaller than today's robots. Robots might work alone or in teams to eradicate disease and treat other conditions. Some believe that semiautonomous nanorobots are right around the corner -- doctors would implant robots able to patrol a human's body, reacting to any problems that pop up. Unlike acute treatment, these robots would stay in the patient's body forever.
Another potential future application of nanorobot technology is to re-engineer our bodies to become resistant to disease, increase our strength or even improve our intelligence. Dr. Richard Thompson, a former professor of ethics, has written about the ethical implications of nanotechnology. He says the most important tool is communication, and that it's pivotal for communities, medical organizations and the government to talk about nanotechnology now, while the industry is still in its infancy.
Will we one day have thousands of microscopic robots rushing around in our veins, making corrections and healing our cuts, bruises and illnesses' With nanotechnology, it seems like anything is possible.
Whatever you say, the use of nanotechnology in the field of medicine could revolutionize the way we detect and treat damage to the human body and disease in the future, and many techniques only imagined a few years ago are making remarkable progress towards becoming realities.
MATERIALS REQUIRED FOR THE CONSTRUCTION
Making a model a related to the nanotechnology is quite difficult as we cannot show the nanobots (which are too small, not visible by eyes) travelling in the bloodstream, blood vessels etc. However, only the large size of nanobots (around 1-2cm) can be shown which will be engaged in repairing the damaged tissues of some organs. Our model will not be a working model but it can demonstrate the working of the nanobots. We can show the internal organs (lungs, heart, stomach, liver and intestines) and nanobots repairing their damaged tissues. We will use a thermocol board as a frame. Then with the help of newspaper, we will make organs and cover them with tissue paper, and finally paint all the things which will give them a 3D effect on the thermocol board. For nanobots, wires and any small material (it may be in cylindrical, spherical shape) can be used for the construction.
FIELDS OF APPLICATION
• Treating arteriosclerosis: Arteriosclerosis refers to a condition where plaque builds along the walls of arteries. Nanorobots could conceivably treat the condition by cutting away the plaque, which would then enter the bloodstream.
Nanorobots may treat conditions like arteriosclerosis by physically chipping away the plaque along artery walls.
[pic]
• Breaking up blood clots: Blood clots can cause complications ranging from muscle death to a stroke. Nanorobots could travel to a clot and break it up. This application is one of the most dangerous uses for nanorobots -- the robot must be able to remove the blockage without losing small pieces in the bloodstream, which could then travel elsewhere in the body and cause more problems. The robot must also be small enough so that it doesn't block the flow of blood itself.
• Fighting cancer: Doctors hope to use nanorobots to treat cancer patients. The robots could either attack tumors directly using lasers, microwaves or ultrasonic signals or they could be part of a chemotherapy treatment, delivering medication directly to the cancer site. Doctors believe that by delivering small but precise doses of medication to the patient, side effects will be minimized without a loss in the medication's effectiveness.
• Helping the body clot: One particular kind of nanorobot is the clottocyte, or artificial platelet. The clottocyte carries a small mesh net that dissolves into a sticky membrane upon contact with blood plasma.
• Parasite Removal: Nanorobots could wage micro-war on bacteria and small parasitic organisms inside a patient. It might take several nanorobots working together to destroy all the parasites.
• Gout: Gout is a condition where the kidneys lose the ability to remove waste from the breakdown of fats from the bloodstream. This waste sometimes crystallizes at points near joints like the knees and ankles. People who suffer from gout experience intense pain at these joints. A nanorobot could break up the crystalline structures at the joints, providing relief from the symptoms, though it wouldn't be able to reverse the condition permanently.
• Breaking up kidney stones: Kidney stones can be intensely painful -- the larger the stone the more difficult it is to pass. Doctors break up large kidney stones using ultrasonic frequencies, but it's not always effective. A nanorobot could break up a kidney stones using a small laser.
Nanorobots might carry small ultrasonic signal generators to deliver frequencies directly to kidney stones.
[pic]
• Cleaning wounds: Nanorobots could help remove debris from wounds, decreasing the likelihood of infection. They would be particularly useful in cases of puncture wounds, where it might be difficult to treat using more conventional methods.
• Cleaning Mouth: A mouthwash full of smart nanomachines could identify and destroy pathogenic bacteria while allowing the harmless flora of the mouth to flourish in a healthy ecosystem. Further, the devices would identify particles of food, plaque, or tartar, and lift them from teeth to be rinsed away. Being suspended in liquid and able to swim about, devices would be able to reach surfaces beyond reach of toothbrush bristles or the fibres of floss. As short-lifetime medical nanodevices, they could be built to last only a few minutes in the body before falling apart into materials of the sort found in foods (such as fibre).

