服务承诺
资金托管
原创保证
实力保障
24小时客服
使命必达
51Due提供Essay,Paper,Report,Assignment等学科作业的代写与辅导,同时涵盖Personal Statement,转学申请等留学文书代写。
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标私人订制你的未来职场 世界名企,高端行业岗位等 在新的起点上实现更高水平的发展
积累工作经验
多元化文化交流
专业实操技能
建立人际资源圈Industrial_Chemistry
2013-11-13 来源: 类别: 更多范文
!"# !"# $
$
%
Natural resource: & (
' )*
" + ,
" + /
" .
Steps to answering this question: 1. Name a limited natural resource (guano) 2. Discuss issues associated with the increased need for the resource 3. Identify replacement materials and/or current research into replacements 4. Use appropriate structure for discussion (opening argument, discussion of issues and concluding remarks)
) 0
! "
1
# $ % $& % $ % $
Recall: 2 % /
3 5
#$ 1
1
4
Factors which affect the equilibrium in a reversible reaction: % , % 1 • 7 • 7 • 7 1 % $ % ( $
" ! ' " ( " "
1 1 1 1
6
1 1
.
(
2%
3
1
8
1
#
aA + bB ↔ cC + dD
7 %
, (
6 "
.
#
[C ]c [ D ]d =K [ A]a [ B]b
Interpretation of the equilibrium constant: 1 1 9 1 7 / 1 1 , : ,
& "
1 5 1 1 .
1 :
'( ) & "
( 1 Recognise:
1 1 #
1 "
,
$ : ; $ : < $ : =
1
> +
*
+ • • • • •
&
# #' ,
!0 # .
! ! !
Process of sulfur extraction: . + , + % 5 7 1 . AA BC
@* %"
)
Property of sulfur which allow its extraction: + . • $ > %" • • + + $
8
# @* %" /
Environmental issues: 7 8 , D .
*
H 2 SO4
. /
.
1 5 5
Steps to producing sulfuric acid: %
# & !
$ . #
+ Conditions necessary: .
.
S ( s) + O2 ( g ) ↔ SO2 ( g ) + ∆H
. . ****% . .
!*** %
SO2
. # & !
SO3
! !
+
. .
.
. .
" 1
. .
V2O5 "
.
V2O 2 SO2 ( s ) + O2 ( g ) ← 5 → 2 SO3 ( g ) + 197 kJ
Conditions necessary: + $ $ % 9 .
/0 #
. !**5BB**%" 5) 1 "
1 , .
!
.
.
" 1 $ " .
H 2 S 2O7 "
>
$
1
.
SO3 ( g ) + H 2 SO4 (l ) → H 2 S 2O7 (l )
1 # &
A C
H 2 S 2O7 (l ) + H 2O (l ) → 2 H 2 SO4 (l )
SO2 SO3
Conditions necessary for producing SO2 :
S ( s ) + O2 ( g ) → SO2 ( g ) + ∆H
. . 1 . EE E"
****%
!*** %
.
SO2
SO3
Conditions necessary for producing SO3 :
V2O 2 SO2 ( s ) + O2 ( g ) ← 5 → 2 SO3 ( g ) + 197 kJ
+
.
$ $
% 9 . ,
1 . . 1 . .
!**5BB**%" . . / 1 ,
"
5) . 1 1
"
,
5) .
SO2 SO3
"
0
$ . + .
. 1
2 SO2 ( s ) + O2 ( g ) ↔ 2 SO3 ( g ) + 197 kJ
$ , . "
!
BB**% /
# $
!***% "
! 2 % $
. AFC
.
Sulfuric acid as an oxidizing agent: + . / G # Zn( s ) + 2 H (aq ) → Zn ( aq ) + H 2 ( g )
+
" .
2+
(
# Zn( s ) + H 2 SO4 ( aq ) → ZnSO4 (aq ) + H 2 ( g )
!
" . /
−
.
2−
Sn( s ) + 2 H + (aq ) + 2 HSO4 (aq ) → Sn 2+ (aq ) + SO2 ( g ) + 2 H 2 O(l ) + SO4 (aq )
Sulfuric acid as a dehydrating agent: % # $
C 2 H 5OH (l ) + H 2 SO4 (l ) → C 2 H 4 ( g ) + H 2 O(l )
% #
C12 H 22 O11 ( s) → 12C ( s ) + 11H 2 O( g )
! !
Describe the exothermic nature: 7 .
H 2 SO4 (l ) + H 2 O (l ) → H 3O (aq ) + HSO4 (aq ) + heat
Explain the exothermic nature: " # + 8 + $ -5 # H 2 SO4 (l ) + H 2 O(l ) → H 3 O (aq ) + HSO4 ( aq ) # HSO4 (aq ) + H 2 O(l ) ↔ H 3O (aq ) + SO4 ( aq ) " . " . -H . 3 $
+
+
−
+
−
−
+
2−
# "
2 H (aq ) + 2 H 2 O(l ) → 2 H 3O + (aq ) ∆H hydration = −2182kJ .mol −1
Concerns with sulfuric acid: 7 Safety precautions# + I " , ) +
.
. 8 .
,
/
B
Safety precautions# % 1 0 +
4 & &
3
$
• • •
% % ( 1
)C "
" % . $ +
!
! &
.
1
"
Electrolysis: The process of driving a non-spontaneous redox reaction to occur by means of electrical energy, to separate ions at molten state. Electrolytic cell: an electric cell in which the process of electrolysis occurs Galvanic and electric cells: & . 9 $ 5 . . &
8 . 8 .
* " !
9 2 #
General terms: $ Main features: %
.
/
+
"
−
. /
−
+
Anode reaction: 2Cl (aq ) → Cl2 ( g ) + 2e " .
−
.
−
Cathode reaction: 2 H 2 O (l ) + 2e → H 2 ( g ) + 2OH ( aq) # 2Cl (aq ) + 2 H 2 O (l ) → Cl 2 ( g ) + H 2 ( g ) + 2OH (aq ) 7 8 1 # 2 Na ( aq ) + 2Cl ( aq ) + 2 H 2 O (l ) → Cl2 ( g ) + H 2 ( g ) + 2 Na ( aq ) + 2OH ( aq ) # 2 NaCl ( aq) + 2 H 2 O (l ) → 2 NaOH ( aq) + Cl2 ( g ) + H 2 ( g )
electrolysis
+ − + − − −
! &
! # $ &&
% $
% $
%
@
The Mercury Process . Description of equipments: , 1 .
.
.
Basic chemistry (must memorize equations): $ ,
-
Cathode reaction: 2 Na ( aq ) + 2e + Hg (l ) → 2 Na ( dissoved % Anode reaction: 2Cl (aq ) → Cl2 ( g ) + 2e ,
− −
+
−
in Hg )
5 # 2 Na / Hg + 2 H 2O(l ) → 2 NaOH ( aq) + H 2 ( g ) + 2 Hg (l ) # 2 Na + + 2Cl − + 2 H 2 O (l ) → 2 Na + + 2OH − + H 2 ( g ) + Cl2 ( g )
Advantages: • $ • $ • ( Technical difficulties: • . • J • 2 • G 1 1
.
.
F
Environmental difficulties: • , + •
.
%
. #
• •
$ +
.
.
The Diaphragm Process $ . Description of equipments: ,
1
, 5 . .
Basic chemistry (must memorize equations): $ . /
"
"
Anode reaction: 2Cl − (aq ) → Cl2 ( g ) + 2e − + " . Cathode reaction: 2 H 2 O (l ) + 2e → H 2 ( g ) + 2OH ( aq) #
− −
.
2 Na + (aq ) + 2Cl − (aq ) + 2 H 2O(l ) → Cl2 ( g ) + H 2 ( g ) + 2 Na + (aq ) + 2OH − (aq )
. Advantages:
• •
1 2 1
G -
Technical difficulties: % • 1 • . • ,
5"
.
C "
1 Environmental difficulties:
The Membrane Process $ %
5
Basic chemistry (must memorize equations): " 7 . . G %" Anode reaction: 2Cl (aq ) → Cl2 ( g ) + 2e
− − − −
.
Cathode reaction: 2 H 2 O (l ) + 2e → H 2 ( g ) + 2OH ( aq) Overall: 2 NaCl ( aq) + 2 H 2 O (l ) → 2 NaOH ( aq) + Cl2 ( g ) + H 2 ( g )
electrolysis
Technical and environmental difficulties in comparison to other processes: # • • • 5 G . .
A
5
Model response: “Evaluate changes in industrial production methods for sodium hydroxide” (6 marks HSC2002) + # 1 G ( / 0 . 5
&
# " G . * G -"
# GH G -
G To identify chlorine: , G> $ , % To identify hydrogen gas: , ,K 3 To identify NaOH: $ G Hazards: • 7 • 7
0 ! "
,
G -
9
1
3
The decomposition of molten NaCl to its elements:
% , # #
2 NaCl (l ) → 2 Na (l ) + Cl 2 ( g )
Na + e → Na (l )
+
−
2Cl − → Cl2 ( g ) + 2e −
The decomposition of aqueous NaCl to its elements:
*
2 NaCl (aq ) + 2 H 2O(l ) → 2 Na + (aq ) + 2OH − (aq) + H 2 ( g ) + Cl2 ( g )
% , #
2 H 2O + 2e − → H 2 + 2OH − 2Cl − → Cl2 ( g ) + 2e −
# &
B +
Saponification is described as the hydrolysis of fats and oils under alkaline conditions (OH) to produce glycerol and salts of fatty acids. + . L -" L% -" .
Ra − COO − Rb + OH − → Ra − COO − + Rb − OH
For example: H . → H "
Process in the school laboratory: , G Procedure: B 2 ) . > 7 * G% ! B . @ + Safety risk: • G • G .
K
3
G% B** 2 .
)* 2 ! *0 G >* > .
G -
Conditions: • 0 • • 1 + " . . K 3 . 1 .
Industrial process: 0. G ) + 4 > ! 1
B @
7
Conditions: • • • 0 + .
$
1
Comparison in summary: In the School lab: • 6 • 6 • + • ' • + .
0
Structure of soap: + " K 5 K 3 " 3 " . . K
. 3 " K 3
Account for soap’s cleaning action: 7 5 5 5 .
5 . + 4 , 4 Model response: “describe the molecular structure of soap and use this structure to account for the cleaning action of soaps” 7 , 5 % 5 7 5 . 5 " " " . 4
)
,
!
4
4
Emulsion: the dispersion of small droplets of an immiscible liquid in another + . + Formation of micelles: 5 .
# $ $ 5 % $ % $ % $
Anionic detergents: detergents which have a negative charged head. Eg. soap Cationic detergents: detergents with a positively charged head. Eg. alkyl ammonium group Non-ionic detergents: detergents with a polar head rather than ionic head groups such as alcohol and ethoxy functional groups. Surfactant: substance that decreases the surface tension of water or, alternatively, that ‘solubilises’ dirt and grease Structure and chemical compositions: + , + " , ( " G 5 " 2 L% 2 " L'L L + )L 2 4 . 5 % ( 2 " % G LG >H" ' %5
L L
% G H"
G H"
L%-)L %-)L L"
Effect in hard water and uses: 9 + , 8 .
0
)H
% "
)H"
D
0 " , . $ 1
G 5
G 9
8
>
+ 4 % G 9 . %
, $ &
5
% . ,
6
% / 8 + • • • • • 2
&
.
#,
"
.
.
. #
& # CH 3 (CH 2 )14 COOH + # CH 3 (CH 2 )16 COOH # CH 3 (CH 2 ) 7 − CH = CH − (CH 2 ) 7 COOH # CH 3 (CH 2 ) 4 − CH = CH − CH 2 − CH = CH − (CH 2 ) 7 COOH
& & ! &
Soaps: + . Early detergents: 9 . . . Recent detergents: 0 / " . 1 . . " AB* + K @* "
% Non-ionic detergents: 0 5
!
Assessment/Judgment: , ' , 7 7 (
B
+
&
@*
G%"
Raw materials: Products: ,
(CaCl3 )
#
"
(Na2CO3 )
• • • • •
& 7 $ + 5 + ,
& % $
# . " #+ " #+ . # / #+
" % $ & & && # $
.
. " .
/
% $
Flowchart:
Sequence of steps in the Solvay process 6 G% " Chemistry of brine purification:
B
6 $ # #
2−
Ca 3+ (aq ) + CO3 (aq ) → CaCO3 ( s)
.
Mg 2+ (aq ) + 2OH − (aq ) → Mg (OH ) 2 ( s )
Fe 3+ (aq ) + 3OH − (aq ) → Fe(OH ) 3 ( s )
, ) >
%
. Chemistry of hydrogen carbonate formation: 7 .
"
% #
)
CO2 ( g ) + H 2O (l ) ↔ H 2CO3 (aq )
"
+ −
"# #
NH 3 (aq ) + H 2CO3 (aq) ↔ NH 4 (aq ) + HCO3 (aq) Na (aq ) + HCO3 (aq ) ↔ NaHCO3 ( s )
#
+ −
NaCl (aq ) + CO2 ( g ) + NH 3 ( g ) + H 2O (l ) → NaHCO3 ( s ) + NH 4Cl (aq )
! Chemistry of sodium carbonate formation: 8 #
2 NaHCO3 ( s ) heat → Na 2CO3 ( s ) + CO2 ( g ) + H 2O ( g )
. B Chemistry of ammonia recovery: , . 2 . # + . "
CaCO3 ( s ) → CaO ( s ) + CO2 ( g )
. #
CaO ( s ) + H 2O(l ) → Ca (OH ) 2 (aq )
. Ammonia recovery: Ca (OH ) 2 ( aq ) + 2 NH 4Cl ( aq) → CaCl2 ( aq ) + 2 H 2O (l ) + 2 NH 3 ( g ) The overall reaction for the Solvay process:
2 NaCl (aq ) + CaCO3 ( s) ammonia → Na 2 CO3 ( s) + CaCl 2 (aq )
& & !
@
General statement: , + Thermal pollution: +
.
. . .
Waste products: , + , Conclusion:
7 5
+ How the issues are addressed: +
,
$
& 7 ,. 8 !
&&
&
Procedure for modeling reaction of ammoniacal brine with carbon dioxide: D % ) : " . G% G !% G )% > Safety risks: % 9
)
&
5 ,
G> -
Difficulties with laboratory modeling: $ $
4 & &
*% G> & !
G> -
Criteria used: # ) L 1 .
Example- the Solvay process: + 1 , 9 1
G% 4 1
F
8 . 1
1 .

