服务承诺
资金托管
原创保证
实力保障
24小时客服
使命必达
51Due提供Essay,Paper,Report,Assignment等学科作业的代写与辅导,同时涵盖Personal Statement,转学申请等留学文书代写。
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标私人订制你的未来职场 世界名企,高端行业岗位等 在新的起点上实现更高水平的发展
积累工作经验
多元化文化交流
专业实操技能
建立人际资源圈Freshwater_and_Saltwater_Fish
2013-11-13 来源: 类别: 更多范文
Why do some fish normally live in freshwater and others in saltwater' How can some fish adapt to both'
Aldo Palmisano is a research chemist at the Western Fisheries Research Center of the U.S. Geological Survey Biological Resources Division and is affiliated with the University of Washington in Seattle. Here is his answer.
The reason some fish normally live in freshwater and others live in seawater is that one or the other environment provides them with opportunities that have traditionally contributed to their survival. An obvious difference between the two habitats is salt concentration. Freshwater fish maintain the physiological mechanisms that permit them to concentrate salts within their bodies in a salt-deficient environment; marine fish, on the other hand, excrete excess salts in a hypertonic environment. Fish that live in both environments retain both mechanisms.
|
SALMON and other so-called anadromous fish species spend portions of their lives in both fresh and saltwater. | |
Life began evolving several billion years ago in the oceans and since that time, living things have maintained an internal environment closely resembling the ionic composition of those primeval seas. Presumably, the ionic conditions in which life began are uniquely appropriate to its continuation. Laboratory studies support the view that the various chemical phenomena on which life depends--including the interactions of nucleic acids with each other and with proteins, the folding and performance of proteins such as enzymes, the functioning of intracellular machines such as ribosomes, and the maintenance of cellular compartments--are critically dependent on the ionic milieu in which the reactions take place.
Given time, ocean-dwelling creatures took advantage of untapped resources, such as relatively safe spawning habitats or new food sources, that were available to them only by colonizing other environments, like freshwater and land. Colonization was facilitated, if not necessitated, by geological events, such as the movements and collisions of land masses (plate tectonics) and volcanic activity, which served to isolate portions of very similar populations of a single species from one another. Such geological change forced some populations to either adapt or face extinction. Time and natural selection due to physical and environmental variation worked in concert with isolation to foster adaptations. In some cases, these adaptations became permanent and led to species differentiation.
One important aspect of environmental variation is the ionic composition of bodies ofwater utilized as habitat. Chloride cells in the gills of marine fish produce an enzyme, called gill Na+/K+ ATPase, that enables them to rid their plasma of excess salt, which builds up when they drink seawater. They use the enzyme to pump sodium out of their gills at the cost of energy. Additionally, their kidneys selectively filter out divalent ions, which they then excrete. An alternative set of physiological mechanisms allows freshwater fish to concentrate salts to compensate for their low salinity environment. They produce very dilute, copious urine (up to a third of their body weight a day) to rid themselves of excess water, while conducting active uptake of ions at the gill.
Certainly, other adaptations contributed to the capability of isolated populations to adapt more fully to their circumstances. With different sets of predator and prey organisms present in the differing habitats, and different physical ranges available to them, behavioral changes would be required; perhaps a smaller or larger body size or body part would be favored. The accumulation of these kinds of physiological, behavioral and physical changes ultimately led to new species. Isolation may have forced them to conserve their newly developed adaptations among their own descendants, rather than distribute them more broadly. For some, the rift eventually became complete and there could no longer be any cross-breeding between populations that once interbred.
http://www.scientificamerican.com/article.cfm'id=why-do-some-fish-normally

