服务承诺
资金托管
原创保证
实力保障
24小时客服
使命必达
51Due提供Essay,Paper,Report,Assignment等学科作业的代写与辅导,同时涵盖Personal Statement,转学申请等留学文书代写。
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标私人订制你的未来职场 世界名企,高端行业岗位等 在新的起点上实现更高水平的发展
积累工作经验
多元化文化交流
专业实操技能
建立人际资源圈Science_Laws
2013-11-13 来源: 类别: 更多范文
Science Laws
Scaling laws are extremely simple observations about how physics works at different sizes. A well-known example is that a flea can jump dozens of times its height, while an elephant can't jump at all. Scaling laws tell us that this is a general rule: smaller things are less affected by gravity. This essay explains how scaling laws work, shows how to use them, and discusses the benefits of tinyness with regard to speed of operation, power density, functional density, and efficiencyfour very important factors in the performance of any system.
Scaling laws provide a very simple, even simplistic approach to understanding the nanoscale. Detailed engineering requires more intricate calculations. But basic scaling law calculations, used with appropriate care, can show why technology based on nanoscale devices is expected to be extremely powerful by comparison with either biology or modern engineering.
Let's start with a scaling-law analysis of muscles vs. gravity in elephants and fleas. As a muscle shrinks, its strength decreases with its cross-sectional area, which is proportional to length times length. We write that in shorthand as strength ~ L2. (If you aren't comfortable with 'proportional to', just think 'equals': strength = L squared.) But the weight of the muscle is
power, times, density, speed, scaling, volume, strength, million, same, nanoscale, system, parts, laws, systems, smaller, shrunk, performance, weight, wear, very, ten, proportional, important, high, friction, force, factor, engine, design, 1000, watts, scale, per, operation

