服务承诺





51Due提供Essay,Paper,Report,Assignment等学科作业的代写与辅导,同时涵盖Personal Statement,转学申请等留学文书代写。




私人订制你的未来职场 世界名企,高端行业岗位等 在新的起点上实现更高水平的发展




Alternatives to Cognitive Individualism--论文代写范文精选
2016-03-08 来源: 51due教员组 类别: Essay范文
通过一个实验的区别,别人做同样的物理运动。不过也有明显的认知差异。科学家的心理表征截然不同于演员,科学家们吸收了大量的陈述性和程序性知识的培训。实验者的实验计划和解释结果不能完全解释社会环境。下面的essay代写范文讲述了这一方面。
Abstract
Downes (1993, p. 452) accuses me and others of cognitive individualism, "the thesis that a sufficient explanation for all cognitive activity will be provided by an account of autonomous individual cognitive agents." Obviously, I do not hold this position, and in fact have given a battery of arguments why psychological reductionism in science studies is bound to fail (Thagard 1993). But the kind of anticognitive view that Downes seems to prefer in alliance with Latour, Woolgar and Collins is also bound to fail. Downes distinguishes three levels of social aspects of science, each of which can be shown to have an essential cognitive component.
The first level is the "public embodiment of scientific theories", which includes the textbooks, research papers, instruments, and other shared property of the scientific community. These clearly exist outside the mental representations of individual scientists, and naturalistic science studies cannot ignore their significance. But part of this significance is cognitive: the use of textbooks, papers and instruments by scientists presupposes their mental capacities to read, write, plan, design, and in other ways produce and use such tools. The public embodiment of scientific knowledge would be pointless if scientists did not have the cognitive processes to understand and produce the embodied objects. Use of external representations such as books and diagrams means that the thought of each scientist does not have to rely entirely on his or her own internal mental representations; but internal representations are needed to comprehend the external ones.
Downes' second level is social interaction, such as is found in complex laboratory work where no one researcher is entirely responsible for the ultimate result. This level is indeed of great importance, as is clear from research in fields like psychology, where most research is collaborative, and experimental physics, where almost all work is collaborative. But the importance of collaboration and social interaction speaks only against the most implausible forms of psychological reductionism and provides no support for purely social accounts. Understanding of how scientists work with each requires in part understanding of how they communicate with each other, which in turn requires cognitive theories of how they represent information and use language and other means such as diagrams to convey information to each other. Level 2 is undeniably social, but it is also undeniably cognitive.
Downes' third social level depends on the claim that the activities of scientists only make sense when taken in the context of a broader scientific community. The difference between someone performing an experiment and someone else doing the same physical motions in a play depends on the fact that the former is part of a community of experimenters. We can grant this social distinction, but cannot help but notice that there are obvious cognitive distinctions too. The mental representations of the trained scientist are drastically different from those of the actor who is merely mouthing lines, since the scientists has absorbed an enormous amount of both declarative and procedural knowledge in the course of training. The ability of the experimenter to plan experiments and interpret the results cannot be explained purely in terms of social context, but must also make reference to mental structures and procedures.
My arguments that Downes' three social levels each have a crucial cognitive aspect are in no way an attempt to explain them psychologically. We can appreciate social aspects of science at each of these levels while simultaneously appreciating relevant cognitive aspects. Figure 1 diagrams four simple models of the relations between psychological and sociological explanations of science. In (a), psychological reduction, only psychological explanations of science are admitted, and any social aspects are also to be explained psychologically. Sociological reduction, (b), is the equally extreme view that science and the psychological have purely social explanations. Model (c), social production, is a slightly less extreme view that simply ignores the psychological in giving social explanations of science. By far the most plausible model is (d), which has the development of science being explained both socially and psychologically, with the relation of the social and the psychological being interpenetration rather than reduction. Sometimes we need the social to help explain the psychological, as when the development of Lavoisier's beliefs is seen as in part the result of his circle of friends. And sometimes we need the psychological to explain the social, as when cognitive processes of analogy thinking are used to help understand how social structures can suggest scientific theories.
When the sociology of scientific knowledge arose in the 1970s with its implication of supplanting logical explanation schemas with social ones, philosophers were aghast. Since Frege, philosophers in the analytic tradition viewed incursions of psychology into epistemology as assaults on rationality. Incursions of sociology seemed even worse, especially given the rampant relativism of some sociologists such as Woolgar (1988). However, as epistemology and philosophy of science have come to take psychology more seriously, it has become obvious that psychologism requires new theories of rationality, but need not embrace irrationalism or relativism. For example, Giere (1988), Goldman (1986), Harman (1986), and Thagard (1988, 1992) all use psychology to challenge traditional logic-based conceptions of rationality while opening up new territory for rational appraisal.
Similarly, taking the social context of science seriously does not entail relativism. Goldman (1992, p. 194), Kitcher (1993), and Solomon (in press) have outlined how social practices, like cognitive processes, can be subject to rational appraisal, for example concerning the extent to which they promote reliable beliefs. Logical explanation schemas carry rationality with them for free, since any beliefs that are inferred logically are presumably warranted. With cognitive and social explanations the matter is more complicated. We have to ask first what is the best cognitive and social account of a scientific development, and only then raise the question whether the cognitive and social processes invoked are ones that, from a broader view, promote the ends of science. In pursuit of the first question, philosophers of science can ally themselves with psychologists, sociologists, and historians of science who, lacking an appetite for the second question, may choose to leave concern for rationality in philosophy, its traditional home. But rational appraisal of social practices and organizations has barely begun.
Solomon (in press) has made the audacious proposal that the scientific community should be taken as the important unit of cognitive processing, rather than the individual scientist. She contends that a scientific community may reach a consensus that can be judged to be normatively correct from an empirical perspective, even though not even one individual scientist in the community made an unbiased judgment. While the view that she calls "social empiricism" is a useful antidote to past neglect of social aspects of rationality, it swings too far in that direction. My Integrated Cognitive/Social Schema in section 3 allows various cognitive and motivational biases to influence the judgments of scientists. But if these biases are as dominant as Solomon suggests, it becomes mysterious how the community collectively reaches a consensus based on empirical success rather than communal delusion. On the other hand, if scientists share cognitive processes such as those postulated by my theory of explanatory coherence (Thagard 1992), then their convergence on the empirically successful theory despite their disparate individual biases becomes intelligible. Individual evaluations of the merits of competing theories are not all there is to rationality, but they are an indispensable part of it.
A key conclusion to draw from the interdependence of cognitive and social explanations of scientific change is that appraisal of cognitive and social strategies must also be linked. Cognitive appraisal should take into account the fact that much scientific knowledge is collaborative, so that we should evaluate particular cognitive strategies in part on the basis of how well they promote collaboration. Conversely, social appraisal should take into account the cognitive capacities and limitations of the individuals whose interaction produces knowledge. Determining how to facilitate the growth of scientific knowledge, like the more descriptive task of explaining this development, depends on appreciating the complex interdependencies of mind and society.(essay代写)
51Due网站原创范文除特殊说明外一切图文著作权归51Due所有;未经51Due官方授权谢绝任何用途转载或刊发于媒体。如发生侵犯著作权现象,51Due保留一切法律追诉权。
更多essay代写范文欢迎访问我们主页 www.51due.com 当然有essay代写需求可以和我们24小时在线客服 QQ:800020041 联系交流。-X(essay代写)
